Waste not, want more; growing algae on nitrate waste

Louiza Norman
Talk outline

• Cambridge Water - bioremediation
 – Laboratory experiments
 – Socks
 – PBR

• Future experiments - Polar species

• Future innovations
Cambridge Algal Innovation Centre

Partnership with Cambridge Water

- Large volumes of high NaCl, high Nitrate containing waste water (Brine)
- Currently diluted with ground-water prior to feedback into system/sewage
- Can we grow algae on this waste water? (ie, denitrification)
- Biomass could be used for other commercial purposes
Why does Cambridge Water have large amounts of brine waste?

- Ground water contains very high concentrations of nitrates (from fertilisers, animal waste etc)
- Pass ground water through columns that contain resins
- Anions, specifically nitrate anions (NO$_3^-$) replace chloride ions in the resins
- Rejuvenating the resins is by washing the resin with Brine (high NaCl)
- The high concentration of chloride ions replaces the nitrates
Can algae grow in this brine + nitrate waste water?

Cambridge Water provided
a) 10 L of 100% crude Brine wash
b) 10 L of diluted brine wash (1:3 brine : GW)

What is in this waste?

<table>
<thead>
<tr>
<th></th>
<th>100% Brine</th>
<th>Diluted Brine</th>
<th>UK drinking water standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.64</td>
<td>8.13</td>
<td>6.5 - 9.5</td>
</tr>
<tr>
<td>Nitrate</td>
<td>4210</td>
<td>53.3</td>
<td>50 mg L</td>
</tr>
<tr>
<td>Chloride</td>
<td>52700</td>
<td>1090</td>
<td>250 mg L</td>
</tr>
<tr>
<td>Sodium</td>
<td>44300</td>
<td>6990</td>
<td>200 mg L</td>
</tr>
<tr>
<td>Phosphate</td>
<td>0.29</td>
<td>0.25</td>
<td>none mg L</td>
</tr>
<tr>
<td>Sulphate</td>
<td>1820</td>
<td>1090</td>
<td>250 mg L</td>
</tr>
</tbody>
</table>
Initial test species

Chlorella vulgaris
(freshwater)

Tetraselmis suecica
(marine flagellate)

Nannochloropsis oculata
(freshwater)

Isochrysis galbana
(marine flagellate)

Dunaliella salina
(marine)

Pavlova lutheri
(marine flagellate)

Phaeodactylum tricornum
(marine diatom)
Can algae grow in the crude waste mixed with growth media?

Growth Shaker 12/12h 25 °C

Marine f/2 growth media (f/2)
f/2 minus NaNO$_3$ + Brine Waste (eq. 55 mg NO$_3$/L)

Standard f/2

f/2 (-N) plus Brine Waste
Brine tolerance – Laboratory conditions

Phaeodactylum (marine species)
- Standard f/2 (55 mg NO3/L)
- 100% Brine waste (>4 g NO3/L)
- f/2 (-N) + 2% brine (275 mg NO3/L)
- f/2 (-N) + 0.8% brine (110 mg NO3/L)
- f/2 (-N) + 0.4% brine (55 mg NO3/L)
- f/2 (-N) + 0.2% brine (28 mg NO3/L)
- f/2 (-N) + 0.04% brine (5 mg NO3/L)

Chlorella (Freshwater species)
- Standard 3N BBM (548 mg NO3/L)
- 100% Brine waste (>14 g NO3/L)
- 3N BBM (-N) + 2% brine (2738 mg NO3/L)
- 3N BBM (-N) + 0.8% brine (1095 mg NO3/L)
- 3N BBM (-N) + 0.4% brine (548 mg NO3/L)
- 3N BBM (-N) + 0.2% brine (274 mg NO3/L)
- 3N BBM (-N) + 0.04% brine (55 mg NO3/L)
Sock experiments

- Using marine species (*Phaeodactylum, Pavlova, Tetraselmis*)
- f/2 minus NaNO$_3$ + Brine Waste (eq. 55 mg NO$_3$/L)
- Air only or Air + 5% CO$_2$
Winter vs Summer growth

Phaeodactylum

- Air + CO$_2$ - Winter
- Air + CO$_2$ - Summer
- Air only - Winter
- Air only - Summer

Pavlova

- Air + CO$_2$ - Winter
- Air + CO$_2$ - Summer
- Air only - Winter
- Air only - Summer

Tetraselmis

- Air + CO$_2$ - Winter
- Air + CO$_2$ - Summer
- Air only - Winter
- Air only - Summer

OD at 750nm is considerably higher in summer for all species:

- **Phaeodactylum:** Air only - 4.7 fold
 Air + CO$_2$ - 6.5 fold

- **Pavlova:** Air only - 2.6 fold
 Air + CO$_2$ - 4.2 fold

- **Tetraselmis:** Air only - 7.6 fold
 Air + CO$_2$ - 6.6 fold
Long-term winter growth

Air versus CO2

OD 750nm

Days from start

Nitrate added
PBR experiments

• Scale up of sock experiments (100 L)

• *Phaeodactylum tricornum* in standard f/2 media or f/2 minus NaNO$_3$ + brine waste (eq. 55 mg NO$_3$/L)

• *Chlorella vulgaris* in standard 3N BBM or BBM minus NaNO$_3$ + brine waste (eq. 548 mg NO$_3$/L)
PBR – Phaeodactylum (winter)

PBR: Phaeodactylum

Days from start

OD 750nm

- f/2 (-N) + 0.4 % brine (55 mg NO3/L)
- standard f/2 (55 mg NO3/L)
• Summer sock scale up compares well to lab experiments

• Winter PBR compares well to winter socks

• Comparison of summer PBR is in progress
What next for experiments?

Laboratory;

• Measurements of nitrate utilisation

• Metabolite analysis from stored algal pellets (stored at -80 °C)

PBR;

• Analysis of data from *Chlorella vulgaris* study (freshwater species; +/- Brine in 3N BBM)

• Repeat of Phaeodactylum experiment in warmer/longer day Summer months (in progress)
What have we measured?

<table>
<thead>
<tr>
<th></th>
<th>Laboratory</th>
<th>Socks</th>
<th>PBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD at 600 & 750nm</td>
<td>Every other day</td>
<td>Every other day</td>
<td>Every other day</td>
</tr>
<tr>
<td>Cell counts</td>
<td>Every other day</td>
<td>Every other day</td>
<td>Every other day</td>
</tr>
<tr>
<td>Dry Weight</td>
<td>T_{final}</td>
<td>T_{final}</td>
<td>T_{final}</td>
</tr>
<tr>
<td>Nitrate in media</td>
<td>T_{final}</td>
<td>T_{final}</td>
<td>T_{final}</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>T_{final} **</td>
<td>T_{final} **</td>
<td>T_{final} **</td>
</tr>
<tr>
<td>Lipids</td>
<td>T_{final} **</td>
<td>T_{final} **</td>
<td>T_{final} **</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>T_{final} **</td>
<td>T_{final} **</td>
<td>T_{final} **</td>
</tr>
<tr>
<td>pH</td>
<td>T0</td>
<td>T0 & T_{final}</td>
<td>T0 & T_{final}</td>
</tr>
<tr>
<td>Light (PAR)</td>
<td>Continual</td>
<td>Continual</td>
<td>Continual</td>
</tr>
<tr>
<td>Temperature</td>
<td>Continual</td>
<td>Continual</td>
<td>Continual</td>
</tr>
<tr>
<td>KwH</td>
<td>Every other day</td>
<td>Every other day</td>
<td>Every other day</td>
</tr>
</tbody>
</table>

** not all experiments
Future experiments

Growth of Polar/Antarctic species at warm temperatures

- Laboratory temperature tolerance and optimal temperature experiments (5 & 10 °C)
- Growth comparisons with temperate species under the same conditions
- Scale up to 10L PBR during winter

Fragilariopsis sp.

Thalassiosira gravida

Thalassiosira antarctica

Chaetoceros wighamii

Stellarima microtrias

Porosira glacialis
Future innovations

• Replacement of socks with purpose built tube PBRs (capacity 10 L)

• Relocation within Botanic Garden to new/dedicated algae innovation glasshouse
• Secured 155K from University and 100-150K from EnAlgae
• Aim is to have a fully functional GM compliant medium scale algal growth facility
Outputs and grant awards

• Upload of data onto the EnAlgae website

• Write papers and reports for EnAlgae

• NERC SPARK award to investigate the use of algae in anaerobic digestion

• Application for Unilever/NERC impact acceleration fund (20K) to investigate ice binding proteins in polar algae

• Anaerobic digestion network (AD Nett, 60K) provision of useful empirical data